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By C .  Y .  WANG 
Departments of Mathematics and Mechanical Engineering, Michigan State University, 

East Lansing, MI  48824, USA 

(Received 1 December 1987 and in revised form 11 March 1988) 

A corrugated plate is translating in a rotating fluid. Assuming low Reynolds number 
and small amplitudes compared to the Ekman thickness, a perturbation solution is 
found to second order. The resistance and power due to drag depend on the relative 
orientation of the corrugations with the motion. I n  certain instances, it is easier to 
move a corrugated plate than a flat plate in a rotating fluid. 

1. Introduction and formulation 
Consider a wavy or corrugated plate which is rotating a t  the angular velocity of 

a viscous fluid, and a t  the same time translating laterally. If the plate were flat, the 
well-known Ekman boundary layer describes the flow (see e.g. Batchelor 1967). The 
present paper studies the effects of small-amplitude waviness of the plate on the 
Ekman solution. The results are important in the drag determination of corrugated 
or striated surfaces moving in a rotating fluid. An applicable example is the study of 
the resistance of large platforms in the Arctic. 

Let the Cartesian system (x’, y‘, z’) be rotating with angular velocity SZ in the 
2’-direction. Let (u’, ti’, w’) be the respective velocity components. Figure 1 shows the 
plate is moving, in its own neutral plane with velocity U which is a t  an angle /3 with 
the direction of the corrugations. Let the plate be described by 

Here h is the amplitude and 1 is the wavelength of the corrugations. The velocity 
components on the plate are 

u’ = U sinp, v‘ = U cosp, w’ = 0. ( 2 )  

As z’ + CO, all velocities are zero. The solution will be independent of the y’-direction. 
The time variable t can be eliminated by translating the coordinate system with 
speed U sinp in the x’-direction. Set 

u’ = l T  sinp+ Uu, t i ’  = Uti ,  w’ = Uw, (3) 

x‘ = u sinPt+x(v/Q$, yf = y(v/i@, z’ = z ( v / ~ ) k .  (4) 

Here 11 is the kinematic viscosity and we recognize (v /Q);  as the Ekman thickness. 
The Navier-Stokes equations in the rotating (x’, y’, z’) system become 

- 3v + ae[(sin p+ u) u, + wu,] = -p ,  + u,, + u,,, 
2(sin p+ u) + ae[(sin p+ u) v, + wv,] = tj,, + v,,, 

( 5 )  
(6) 
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FIGURE 1. The coordinate systems 

ae[(sin /3 + u)  w, + ww,] = - pz + w,, + wzz, (7) 

U,+W, = 0. (8) 

Here we have assumed small-amplitude corrugations and low velocity such that 
h/(w/Q); = E 4 1 and U/(wQ)a = ae 4 1 where a is a constant of order unity. The 
boundary conditions are on z = E cos (2n(w/Q)~x/ l )  = e coshx 

u = 0,  21 = cosp, w = 0,  (9) 

u = -sinp, 21 = 0, w = 0. (10) 

and far from the surface at z + m,  

2. Perturbation solution 
We expand 

u = U,+EU1+E2U2+ ... 

and similarly for u, w,p .  The boundary condition (9) is expanded in a Taylor series 
about z = 0. Without going into the details, (5)-( 10) yield the zeroth-order solution 
which is similar to  the Ekman solution 

u, = -sinp+sin(P+z) e-’, v,, = cos(p+z) e-’, w, = 0, p ,  = constant. (12) 

The first-order solution is periodic in x:  

where 

I u1 = COShXf’(Z), w1 = coshxg(z), 
w1 = h sinhxf(z), p ,  = h sinhxh(z), 

f = c1 eylz + c2 eyzZ + c ,  ey3z, 

and y l ,  y 2 ,  y3 are the three roots of 

y6-33h2y4+(3h4+4) y2-h6 = 0. (15) 

Figure 2 shows the three computed roots as a function of A. An analytic solution of 
(15) is possible when h = 2.  
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FIGURE 2. The roots of equation (15) y1 = -Bl,yz =--z+Bai,y, =-fb- 
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FIGURE 2. The roots of equation (15) y1 = -Bl,yz =--z+Bai,y, = - - B , - B 3 i .  B, i .  

The boundary conditions dictate 

K = - 2A2(sin p+ cos p) - (A4  + 4) (sin p- cos p),  
I = y; - 2 P y ;  - y; + 2A2y?, 

cz = complex conj. c3, c1 = - 2 Re c3. 

The functions g and h are related to f by 

- 1  
g = 2h2 [jV-2A2j"' + (A4+ 4) f '1, 

The solutions are plotted in figure 3 for p = 0, $t and A = 1. All functions show 
oscillatory decay within the Ekman layer. 

In the second-order solutions, we are only interested in the non x-periodic terms 
since these give rise to mean drag. Let an overbar denote the integration in x over 
the period 2xlh. The governing equations yield 

The boundary conditions are 
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FIGURE 3. The functions f(x),g(z),f’(z) for A = 1. -, ,9 = 0”; ---. p = 90” 

with similar conditions for v2 and izZ. The solution is 

G~ = $ e-z{[~~~/3-f”(0)] cosz-[sin/?+g’(O)] sinz}, 

u2 = t e-Z{[f”(0)-cos/3] sinz-[sin/?+g’(O)] cosz}, 
u” = 0, p2 = 0. 

3. Stresses and drag on the plate 

The stresses on the plate in the intrinsic directions are 
Let s be the direction along the surface of the plate and n be the normal (figure 1 c ) .  



Drag of a corrugated plate in a rotating Jluid 585 

FIGURE 4. The extremum values of 9, which is related t o  power. 

The drag per unit width per period in the - y-direction is solely due to shear. 
c 

Y = - rnY ds = 7,y( 1 + e2h2 sin Ax): dx ! $  
= sinp+cos/3+e2$,+O(e4) (25)  

= - $ ’ ( O ) - ; f ” ( o ) - f ’ ( O ) .  (26) 

The drag per width per period in the -x-direction is the sum of shear drag and 
pressure drag. 

X = - r,, dx- r,, eh sin hxdx 

= sin p - cos p+ e2$2 + 0(e4)) ,  ( 2 7 )  

$2 = g(O)- ; f” (O)+$‘(O) .  (28) 

i f  
If the plate were flat, E = 0. Equations (25), (27)  show the net resistance (per 

projected area, normalized by pU(vf2);)  has the value of 4 2  pointing a t  an angle of 
135” from the direction of motion. This non-alignment is characteristic of drag in a 
rotating fluid. If e += 0, the quantities e2$l and e2$2 represent corrections to the 
resistance components in the - y- and -x-directions. Of interest is the power P (pcr 
area, normalized by pU2(v f2 ) i )  needed to maintain the motion 

(29) 

(30) 

P = sinpX+cosPY = l+e2$,+O(e4),  

$ $ = .  - sin /3$$2 + COB 

Figure 4 shows the maximum of #,, occurring at  p = 90” increases with A. In 
situations where the plate needs to be slowed down, maximum power dissipation is 
desirable. The minimum power, occurring a t  /3 = Oo,  180”, is particularly important. 
Figure 4 shows $, min is slightly positive for 0 < h < 1.171,  but becomes negative for 
h > 1.171. This means, in a rotating fluid, it may be easier to move a corrugated plate 
than a flat plate! 
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4. Discussion 
Wang (1978) studied the low-Reynolds-number flow due to a moving corrugated 

plate in a non-rotating fluid. It was found that the corrugations always increase the 
drag. There is also a directional preference. The drag increase when the motion is 
against the striations is about twice the drag increase when motion is along the 
striations. The situation is quite different when the fluid is rotating. The present 
paper shows the power (or drag in the direction of motion) for the corrugated plate 
may be less than that of a flat plate. The reason is as follows. For any parallel motion 
in the plane of rotation an Ekman flow is induced 90” from the direction of motion. 
Thus when the plate is moving in the y-direction (p = 0), a flow uo is induced. In  
order to bring the velocity to zero a t  the crests of the corrugations, a negative u1 (and 
a positive ulzlo) is needed. This in turn causes a negat,ive compensatory for both 
crests and valleys, represented by the term - cos hr.u,,l, in equation (20). Since is 
in the ---direction, an Ekman flow 5 in the y-direction is induced. This gives a 
positive shearf”(0) which reduces the drag I’ and thus the power. Physically the 
corrugations restrict the Ekman side flow, resulting in a saving in energy. 

The assumption of small U/(vO) i ,  (Rossby number x Reynolds number):, implies 
small inertial effects in comparison to viscous and rotational effects. For the present 
problem, the nonlinear convective terms are suppressed until the second order where 
they have zero mean in 5. Thus the reduction of power is not due to inertial 
convection, but to the nonlinear interaction of the Ekman layer and corrugations 
described earlier. If [7/(vO); is not small, the zeroth-order solution is the same while 
the first order would be a solution to the Orr-Sommerfeld equation. The second 
order, still containing the nonlinear interacbions, would be unsolvable. 

The amplitude of the corrugations is assumed to be small compared to the Ekman 
thickness. If the amplitude is the same order as the Ekman thickness, the Ekman 
layer is destroyed and an analytic solution does not exist. However, if the 
Ekman thickness is much smaller than the amplitude, then we can envisage a thin 
Ekman boundary layer attached to the surface contour. Locally, the boundary is like 
a slanted flat surface. The zeroth-order solution to this problem was briefly described 
by Hsueh (1968). Changes in the mean drag, of course, cannot be obtained from the 
zero t h-order . 
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